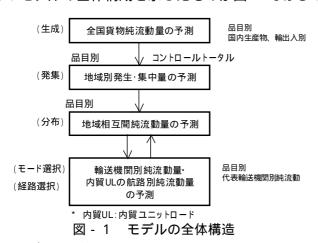
我が国の国内幹線貨物流動の中長期的な需要予測モデル*

Domestic Inter-urban Freight Transport Demand Model of Japan

遠藤弘太郎**, 土居厚司***, 加藤浩徳****, 兵藤哲朗***** By Kotaro Endo**, Atsushi Doi***, Hironori Kato**** and Tetsuro Hyodo*****


1.はじめに

本研究は,我が国における国内幹線貨物流動を対象に,中長期的な(2010年の)需要動向の予測を行うためのモデルを構築することを目的とする.

2. モデルの基本的考え方

(1)モデルの基本構造

本モデルは,国内の鉄道,自動車,海運の3輸送機関による貨物輸送を対象とし,航空貨物は対象外としている.モデルは純流動データをベースとした四段階推定法に基づき需要予測を行い,その後,最終的に総流動ベースに変換するという構造としている.モデルの全体構成を示したものが図-1である.

(2)モデルの対象

a)ゾーニング

基本的な地域区分としては,都道府県単位を基本とし,北海道のみを4分割した全国50地域区分とした.ただし,輸送機関別の需要予測の際は,海運の港湾選択が評価可能なように,地方生活圏を基本

- * Key words 物資流動
- ** 正貞 修(工)㈱ライテック社会調査・計画室 (〒162-0845 東京都新宿区市谷本村町 2-7 TEL: 03-3268-7182/endou@litec.co.jp)
 - (株)ライテック社会調査・計画室
- **** 正員 博(工)東京大学大学院工学系研究科
- ****正員 工博 東京商船大学流通管理工学講座

とした全国 251 ゾーン単位で分析を行うものとする. b)品目区分

重量金額換算率(後述)を算定する際には 49 部門とし、それ以降のステップにおいては、表-1 に示す 15 品目を基本とする. なお、廃棄物、原油については本モデルの対象外としている.

表 - 1 基本的な品目区分

品目区分	品目区分(47 部門:廃棄物,原油を除く)
農水産品	穀物,野菜・果物,畜産品,水産品,その他農産
	品
林産品	原木,製材,薪炭,その他の林産品
鉱産品	石炭,金属鉱,石灰石,非金属鉱物
砂利・砂・石材	砂利・砂・石材
鉄鋼	鉄鋼
金属・金属製品	非鉄金属,金属製品(金属製輸送容器を除く)
機械工業品	産業機械,電気機械,その他機械
輸送機械	自動車,輸送機械
石油・石炭製品	重油,揮発油,その他石油,石炭製品,その他石
	油製品
窯業・土石製品	セメント,セメント製品,ガラス・ガラス製品,
	その他の窯業品
生コンクリート	生コンクリート
化学工業品	化学薬品,化学肥料,染料・顔料・塗料,合成樹
	脂,動物性油脂,その他の化学工業品
軽工業品	紙,パルプ,糸,織物
製造食料品	製造食品,飲料
雑工業品	日用品,木製品,その他の製造工業品(取り合わ
	せ品を含む), 動植物生飼肥料

c)用いた純流動データ

1995 年全国貨物純流動調査の「三日間調査」の流動パターンを用いて「年間調査」によって年間拡大を行い、年間値ベースの品目別代表輸送機関別純流動データを作成した。ただし、農林産品については、上記調査の把握率が低いため、貨物地域流動調査(総流動)を用いて、純流動データを推定した。

3. モデルの概要

(1)生成交通量モデル

品目別(15 品目区分)全国純流動の予測モデルである.モデルの構造は図-2 の通りであり,重量金額換算率と輸送率という2種類の原単位を用いたモデルである.モデル式は式(1)のように示される.

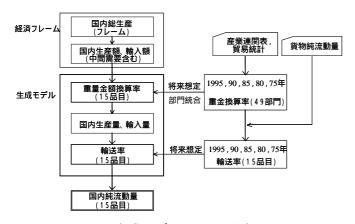


図 - 2 生成モデルによる予測フロー

$$T_h = e_h \cdot \sum_{i \in H_h} \left(C_i^d \cdot F_i + C_i^I \cdot I_i \right) \tag{1}$$

ここで;

 $T_h:h$ 品目(15区分)全国貨物純流動量[トン/年]

 $e_h: h$ 品目輸送率

 $C_i^d:i$ 部門(49区分)国内生産品重量金額換算率

[トン/百万円(実質)] $C_i^I: i$ 部門輸入品重量金額換算率 [トン/百万円(実質)]

 F_i : i 部門国内生産額[百万円(実質)]

 I_i : i 部門輸入額[百万円(実質)]

である.

まず,重量金額換算率とは,各部門の単位生産額・ 輸入額(実質)当たりの重量である.この想定に当 たっては,次のような点を考慮した.

- ・ 1次産品(国内生産品):個々の商品の質が将来 も大きく変化しないと予想されることから, 1995年値を2010年に適用した.
- ・鉄鋼,石油・石炭製品,窯業・土石製品,生コンクリート品(国内生産品): 時系列的に比較的安定的なため,1995年値を2010年に適用した.
- ・その他の製造品(国内生産品): 1985,90,95 年の動向を勘案して 2010 年の数値を想定する.
- ・輸入品:過去の動向を見ると不安定であるため, 1990年と95年の平均値を2010年に適用する. 次に,輸送率とは産業連関表ベースの生産量・輸

入量に対する純流動調査の国内輸送量の比率であり, 15 品目別に想定した.最近の動向は比較的安定的であることから,1995年の数値を2010年に適用した. なお,将来の在庫削減,倉庫,卸関連物流の減少という趨勢から,輸送率が将来減少することも予想されるが,現状ではそのための十分なデータが得られず,輸送率の変動に対する不確実性が大きいため,本モデルでは現状一定と仮定することとした.

(2)発生・集中量モデル

発生量モデルと集中量モデルから構成され,品目別 50 地域別の発生・集中量を推計する.1995 年度の地域別社会経済データを用いたクロスセクション重回帰モデルである.

a)発生量モデル

1次産品では従業人口等生産規模を表す指標を, 工業製品については対応する工業出荷額等を主な説 明変数とした.表-2に採用モデルの概要を示す.

表 - 2 発生量モデルの概要

品目	モデル タイプ	人口変数	販売額	説明変数 出荷額	輸入量	その他	自由度調整済み 相関係数	備考
農水産品	LOG	1次従業	卸売	CALL T HA	1007 (200	417.0	0.878	道東ダミー
林産品	線形	1次従業		素材型	原木等		0.814	
鉱産品	線形			素材型			0.734	山口、福岡、大分ダミー
砂利・砂・石材	LOG			素材型		事業所数	0.800	
鉄鋼	線形			素材型	鉄鋼		0.900	
金属製品	線形		卸売	素材型			0.943	
機械工業品	LOG		卸売	加工型			0.941	
輸送用機械	LOG			加工型			0.864	愛知ダミー
石油·石炭	線形			素材型	石油石炭		0.890	
窯業·土石	LOG			素材型			0.791	茨城、福岡、山口ダミー
生コンクリート	線形		卸売	素材型			0.771	
化学工業品	線形			素材型			0.899	
軽工業品	線形			その他			0.895	大阪ダミー
製造食料品	線形			その他			0.904	
雑工業品	線形		卸売	その他			0.897	

b)集中量モデル

中間生産物のウエイトが高い品目については,その品目を材料とする産業の工業出荷額を,最終製品のウエイトが高い品目は,人口を説明変数に加え,モデルを検討した.表-3に採用モデルの概要を示す.

表 - 3 集中量モデルの概要

品目	モテル			説明変数			自由度調整済み	備考	
шн	タイプ	人口変数	販売額	出荷額	輸出量	その他	相関係数	ma 5	
農水産品	線形			その他			0.858	道東ダミー	
林産品	線形			素材型 + 加工型			0.763	道央ダミー	
鉱産品	線形			素材型			0.742	山口ダミー	
砂利·砂·石材	LOG		卸売	素材型			0.704	東京ダミー	
鉄鋼	LOG			加工型	鉄鋼		0.836		
金属製品	LOG		小売+卸売	加工型			0.870		
機械工業品	LOG		小売+卸売	加工型			0.947		
輸送用機械	LOG		小売 + 卸売	加工型	輸送機械		0.921	愛知ダミー	
石油·石炭	LOG		小売+卸売	素材型			0.830		
窯業·土石	LOG		小売+卸売	素材型			0.908		
生コンクリート	LOG		小売 + 卸売	素材型			0.779		
化学工業品	LOG		小売+卸売	素材型			0.943		
軽工業品	LOG		小売+卸売	その他			0.918		
製造食料品	LOG		小売+卸売	その他			0.941		
雑工業品	LOG		小売+卸売	その他			0.882		

(3)分布交通量モデル

a)モデルの概要

品目別に式(2)に示す二重制約型グラビティモデルを採用し、全国 50 地域間の流動量を推計する. また、地域内々の流動量についても、地域内々の合成距離抵抗指標を設定し、同様の式により推計する.

$$T_{ii} = k_{IJ} \cdot u_i \cdot v_j \cdot G_i \cdot A_i \cdot \exp(-\beta \cdot t_{ii})$$
 (2)

ただし, u_i , v_i はバランシングファクターであり,

$$u_i = \left[\sum_j k_{IJ} \cdot v_j A_j \cdot \exp(-\beta \cdot t_{ij})\right]^{-1}$$
 (3)

$$v_j = \left[\sum_i k_{IJ} \cdot u_i G_i \cdot \exp(-\beta \cdot t_{ij})\right]^{-1}$$
 (4)

である.ここで;

 T_{ij} : (品目別)ij 地域間純流動量(全国 50 地域間)

 G_i : (品目別)i地域発生量

 A_j : (品目別)j地域集中量

 t_{ij} : (品目別) ij 地域間合成距離抵抗指標

k_U: IJ ブロック間補正係数(全国 10 ブロック)

 β : パラメータ

である.補正係数 k_{IJ} は全国 10 ブロック間別に定める係数である.合成距離抵抗指標は地域間 地域内々のそれぞれについて,品目別に式(5)により設定した.

$$t_{ij} = -U_{ij} + C (5)$$

ここで;

 $U_{ii}:ij$ 地域間輸送機関分担モデルのログサム変数

$$U_{ij} = \sum_{r \in i} \frac{G_r}{G_i} \sum_{s \in j} \frac{A_s}{A_j} \ln \sum_m \exp(v_{rsm})$$
 (6)

 G_r : ゾーン r 発生交通量 (251 ゾーン)

A_s: ゾーン s 集中交通量 (251 ゾーン)

 G_r/G_i , A_s/A_j は i 地域発生量・j 地域集中量のそれぞれ rs ゾーンへの分割比率である.これは , 品目別に関連性の深い現況の社会・経済指標により設定し 将来も固定とした.また , 式(5)中の C は , 品目別に最もアクセシビリティが高くなる地域間の t_{ij} がゼロになるように設定した.

次に地域内々の合成距離抵抗指標については,式(7)のように設定する.

$$t_{ii} = \lambda_i \left(-U_{ii} + C \right) \tag{7}$$

ここで、上記 U_{ii} や C は地域間と同一の定義である. ただし、 U_{ii} にはゾーン内々のログサム変数を含まない.また、 λ_i は地域ごとに定められる係数である. b)パラメータ等の推定方法と推定結果

パラメータ等の推定は以下の手順で行った.

【手順 1:βの推定】¹⁾

- 1-0) β , u_i , v_i の初期値を与える.
- 1-1) 地域間 OD 量 ,発生・集中量(地域内々を除く), 地域間合成距離抵抗指標を与件とし,バランシ ングファクターを決定する収束計算を行う.
- 1-2)平均トリップ長の推定値と実績値とを比較し,特定の収束判定基準に達しない場合, T_{ij} ・ t_{ij} = V_{ij} ・ t_{ij} を満たす β に更新し,1-1)に戻る.達した場合,終了する.なお, V_{ij} は ij 地域間実績純流動量である.

【手順2: ¼の設定】

手順 1 で求められた β を用いて,地域間と地域内々の合成距離抵抗指標を同時に与え,地域間と地域内の分布交通量を同時に推計し,実績の内々流動

量を正確に再現するよう, λ_i を決定する.

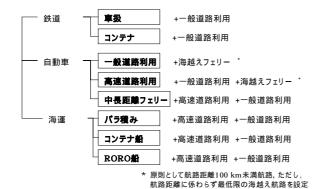
【手順3:k_{II}の設定】

モデルによる現況再現値を推計し、全国 10 ブロック間 OD 表が実績値に一致するように k_{IJ}を設定する.これは,全国 50 地域間 OD 量の精度が十分ではないことから,10 ブロック間別に導入したものである.c)パラメータの推定結果

βの推定結果を表-4 に整理する.相関係数は実績 OD 量との単相関係数である.概ね良好な現況再現性があると判断した.ここで「林産品」、「砂利・砂・石材」、「石油・石炭製品」については、合成距離抵抗指標の代わりに道路利用時間を用いた.

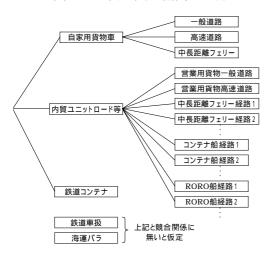
表 - 4 分布交通量モデルの推定結果概要

品目	パラメータ	相関係数	説明変数
1 農水産品	0.720	0.714	合成距離抵抗指標
2 林産品	0.426	0.857	道路利用時間
3 鉱産品	0.826	0.802	合成距離抵抗指標
4 砂利・砂・石材	1.723	0.932	道路利用時間
5 鉄鋼	0.405	0.683	合成距離抵抗指標
6 金属・金属製品	0.860	0.896	"
7 機械工業品	0.844	0.741	11
8 輸送用機械	0.556	0.897	11
9 石油・石炭製品	0.305	0.866	道路利用時間
10 窯業品	0.946	0.685	合成距離抵抗指標
11 生コンクリート	(ほぼ地域内々	流動のみのため	モデルを構築しない)
12 化学工業品	0.858	0.918	合成距離抵抗指標
13 軽工業品	0.730	0.798	"
14 製造食料品	0.858	0.926	"
15 雑工業品	0.844	0.876	II .


(4)輸送機関分担モデル

a)モデルの概要

251 ゾーン間の輸送機関分担率を求めるモデルである.ゾーン相互の流動については,代表輸送機関の所要時間,運賃,ロットサイズ等を説明変数とする非集計型のロジットモデルを用いた.ゾーン内々流動については自家用,営業用貨物車の分担関係のみを予測する集計型のロジットモデルを適用した.b)ゾーン間輸送機関分担モデルの選択構造


図-3 に示す 11 代表輸送機関を対象とし,輸送機関相互の類似性を勘案して図-4のような2段階の選択ツリーを想定し,NL モデルとして定式化した.ここで海運の内貿ユニットロードについては,経路(航路)ごとの需要を選択肢に持つ構造であり,経路選択モデルとしての性格を併せ持つ構造である.

なお,海運バラと鉄道車扱は,輸送する品目が固定的であり,他機関との競合が弱いと考えられるため,別途モデルで対応する.具体的には,海運バラは品目別ゾーン間別の現況分担率に基づき需要を先取りし,鉄道車扱はシェア,輸送量ともに一貫して

注) :代表輸送機関を表す。

図 - 3:代表交通機関の区分

注) : 代表輸送機関を表す。

図 - 4 輸送機関分担モデルの選択ツリー

減少傾向にあることから,過去 10 年間の輸送トン数の平均 GDP 弾性値を用いたモデルを適用した. c)パラメータの推定結果

ゾーン間輸送機関分担モデルの推定結果の概要を表-5~7に示す.段階推定法により輸送量の重み付け最尤法を用いてパラメータ推定を行った.一部の品目で必ずしも十分な尤度比等の統計量が得られているわけではないが,全般的には概ね良好な結果が

4. おわりに

得られたと判断した.

本稿では、中長期的な国内貨物輸送需要を予測するためのモデルの構造と、各サブモデルのパラメータ推定結果の概要について紹介した。本モデルを適用した実際の予測については、今後の課題である。本研究は日本財団の補助を受け、実施した調査結果²⁾を取りまとめたものである。ここで、ご協力いただいた関係者の皆様に感謝の意を表する次第である。

表 - 5 上位 3機関分担モデル

		_				
			特性变数			
		ĭ	選択肢固有変数	尤度比	的中率 (%)	サンプル 件数
品目区分	貨物車· 内貿UL	鉄道 コンテナ	その他の変数			
	ログ サム 変数	一般化費用注)	その他の复数			
農水産品			道路距離	0.238	62.7	2,768
林産品		-	従業者数 , ロットサイズ(自家用 , 営業用・内貿)	0.223	70.7	2,092
鉱産品		-	従業者数	0.203	67.6	1,505
砂利·砂·石材		-	自家用一般道総費用,ロットサイス (自家用,営業用・内貿)	0.015	48.5	2,024
鉄 鋼		-	従業者数	0.200	74.6	2,202
金属·金属製品			道路距離,従業者数	0.488	67.0	2,850
機械工業品			道路距離,従業者数	0.514	65.9	3,138
輸送用機械				0.299	69.6	3,913
石油·石炭製品		-	従業者数	0.049	55.3	2,091
窯業·土石製品			道路距離,従業者数	0.337	73.8	2,720
生コンクリート	-	-	自家用一般道総費用, 営業用·内貿総所要時間, 営業用·内貿総費用	0.452	82.2	1,063
化学工業品				0.132	62.0	2,772
軽工業品			道路距離,従業者数,ロットサイス (鉄道コ,自家用,営業用・内貿)	0.370	53.5	3,398
製造食料品			従業者数	0.322	71.4	3,082
雑工業品			従業者数	0.367	60.8	3,521

注)コンテナ関連の貨物の経路選択に関する予備分析から品目別時間評価値を求め,算出した。

表 - 6 営業用貨物車・内貿 UL 分担モデル

			特 性 変 数		的中率 (%)	サンプル 件数
品目区分	共通	变数	選択肢固有変数	尤度比		
шаел	総所要時 間	総所要費 用	その他の変数			
農水産品			コンテナ船ロットサイス・フェリー頻度, RORO船頻度	0.465	59.1	1,485
林産品				0.360	80.0	1,082
鉱産品				0.288	90.6	1,020
砂利·砂·石材				0.399	92.9	1,000
鉄 鋼				0.452	76.1	1,192
金属·金属製品			フェリー・RORO船ロットサイス゛, フェリー 頻度	0.342	57.1	1,290
機械工業品			ロットサイズ (フェリー・RORO船 , コンテナ船) , フェリー頻度	0.257	53.8	1,442
輸送用機械			フェリー・RORO船ロットサイス	0.479	59.1	2,548
石油·石炭製品			フェリーロットサイス	0.404	64.0	1,048
窯業·土石製品				0.628	70.5	1,224
生コンクリート	注)一般证	直路利用力	がほとんど(約99%)であるため , ヨ	見況分担率	を適用する	
化学工業品			ロットサイズ (フェリー・RORO船 , コンテナ船) , フェリー頻度 , RORO船頻度	0.311	58.3	1,780
軽工業品			ロットサイズ (フェリー・RORO船 , コンテナ船) , コンテナ船頻度 , RORO船 頻度	0.346	63.4	1,834
製造食料品			ロットサイス (フェリー・RORO船,コンテナ船),コンテナ船頻度	0.360	57.7	1,638
雑工業品				0.436	54.1	1,735

表 - 7 自家用貨物車分担モデル

衣・/ 日本用具物半力担しノル								
		特 性 変 数						
品目区分	共通変数	選択肢固有変数	尤度比	的中率	サンプル			
	一般化 費用*	その他の変数	7019210	(%)	件数			
農水産品			0.472	86.1	1,086			
林産品			0.257	89.3	1,010			
鉱産品			0.701	95.5	485			
砂利·砂·石材	注)一般道	路利用がほとんど(約98%)で	あるため、玎	見況分担率で	を適用する			
鉄 鋼			0.485	83.5	1,010			
金属·金属製品			0.118	84.9	1,063			
機械工業品			0.397	77.8	1,024			
輸送用機械			0.563	82.4	1,013			
石油·石炭製品			0.278	91.7	1,043			
窯業·土石製品			0.320	92.3	1,041			
生コンクリート	注)一般道	路利用がほとんど(約100%)で	あるため、現	見況分担率を	適用する			
化学工業品			0.361	87.7	1,027			
軽工業品		高速の1件あたりの総費用	0.421	90.3	1,016			
製造食料品			0.344	86.9	1,062			
雑工業品			0.347	83.5	1,026			

*「第12次道路整備5カ年計画」の時間評価値,走行経費より作成

【参考文献】

- 1) 石川義孝「空間的相互作用モデル その系譜と体系 」 地人書房, 1988 年
- 2) (財)運輸政策研究機構(2001)「長期輸送需要予測に関する調査報告書」