1. はじめに

通勤・通学時の混雑の緩和は首都圏における交通計画上の大きな課題である。都市鉄道の混雑緩和は、主に運行計画の改善や新線整備などの輸送力の増強によって図られてきた。これら供給側の施策の多くは大規模な投資が必要とされ、その実現には長期間を要する。そのため短縮的な効果を狙う施策として需要平準化による混雑緩和施策が有効と考えられる。

数年前より運輸省は首都圏において鉄道事業者や企業の協力を得て、キャンペーン等によってオフピーク通勤の推進を図っている。このようなオフピーク通勤の推進活動を実施するにあたり、どの地域の通勤者に重点的にオフピーク通勤を呼びかけるのが効果的か、どのように通勤時刻を分散するのが効果的か等必ずしも明確になっていないのが現状である。

首都圏におけるオフピーク通勤施策の効果分析を行った調査・研究としては、労働者断絶研究（†）の調査がある。この調査では、東京都と県内の出入通勤者が新たにオフピーク通勤した場合の混雑緩和効果を各路線で評価しており、オフピーク通勤の効果を定量的に評価した初めのケースであると考えられる。しかし、どのようなオフピーク通勤の形態が望ましいか等の検討は行われていない。またピーク・オフピーク時の列車の表定速度を一定と仮定しているところにやや問題を残している。

そこで本研究では、オフピーク通勤を実施する者の

2. ピーク時における鉄道混雑と速度低下の状況

（1）首都圏における鉄道混雑状況

首都圏の平成2年大都市交通センサスデータから路線別・駅間別・時間帯（30分単位）別に断面交通量を集計し、朝の時間帯における混雑率を推計した。午前8:00から8:29の時間帯における混雑率を示したものである。東京多摩地域や埼玉方面からの路線を中心に多くの区間において、身動きができないとされる250％以上の激しい混雑を呈している状況にある。こうした混雑は7:30頃から徐々に激しくなり、9時台をピークに徐々に緩和していき、9:30を過ぎるとほとんど全ての区間で混雑率が200％以下に低下する程度になると推計された。このため、オフピーク通勤による需要の平準化が混雑緩和に有効であることが推計される。

（2）ピーク時における鉄道の速度低下の状況

現在首都圏ではピーク時間帯における過密ダイヤによって多くの鉄道で速度が低下している。混雑とそれに解決すべき重要な課題であると考えられる。午後2時は首都圏における主要な路線のピーク・オフピーク時の表定速度を比較したものである。最も速度が大きい小田急線や京浜線では約20[km/h]の差が生じている。こうした実態からオフピーク通勤によっ
車時間の短縮効果をシミュレーションによって計測するシステムである（図-3）。混雑緩和効果の評価には混雑不効用を用いている。これは、後述するように混雑による不効用をそれと等価な乗車時間に換算するものである。計測手順は以下の通りである。

①平成2年大都市交通センサスマスターデータ（個票データ）に対し、どの地域の何時、何時間帯の通勤者の何割をどの時間帯にシフトさせるかを設定して仮想的な個票データを作成する。この際、経路は現況と同様と仮定する。また、オフピーク時間帯へシフトすることによる乗車時間の短縮を考慮する。

3. オフピーク通勤効果計測システムの概要

(1) システムの概要

本システムはオフピーク通勤による混雑緩和・乗車時間の短縮を含む。
２このオフピーク通勤実施時の個票データから時間帯別駅間別の面積交通量を推計し、混雑率を得る。
３各通勤者（個票）ごとに、現況・オフピーク通勤を実施した場合の混雑率、乗車時間が得られるため、これより混雑不効用の軽減や乗車時間の短縮効果を計算・集計する。

（２）混雑不効用関数
混雑緩和効果の評価指標として、既存研究のよう混雑不効用関数を採用した。これは混雑による不効用をそれ等価な乗車時間に換算する関数である。

\[V_c = 0.007 \cdot \sum t_i \cdot \left(C_i / 100 \right)^4 \] （1）

\[V_c : \text{混雑不効用（分）} \]
\[t_i : \text{駅間} i \text{の所要時間（分）} \]
\[C_i : \text{駅間} i \text{の混雑率（％）} \]

（３）表定速度の違いを考える方法
ピーク・オフピーク時の鉄道の表定速度の違いを考える方法は以下の通りである。
①時刻表やダイヤグラムから路線別・方向別・ターミナル駅出発（到着）時間帯（30分単位）別に主要駅間の所要時間データを集約し、このデータから補完推計を行い、路線別・方向別・全駅間OD別に着駅到着時間帯別・所要時間のデータベースを作成。
②個人（センサス個票）の通勤経路（乗降駅、乗降時間）データに対して、上記所要時間データを検索し、オフピーク後の乗降時刻、乗車時間を推計する。

４．ケーススタディ
本章では、オフピーク通勤効果計測システムを用いたシュミュレーション結果について示す。

（１）基本ケースの設定
基本ケースとして、東京都心8区（千代田・中央・港区・新宿・豊島・渋谷・文京・台東）を動態として8:30〜9:30の間に動態で到着している通勤者の5人で5人を作新たなオフピーク通勤者とし、このうちの2割が1時間前、8割が1時間後ろにシフトするケースを設定した。このときの都心8区への通勤・通学者の到着時間分布は図-4の通りである。

（２）路線別のオフピーク通勤効果
基本ケースにおける路線別のシュミュレーション結果を図-1に示す。この表に示した効果は全て通勤定期券利用者に関する1日片道当たりの効果である。路線別にみて最も効果が大きいのは東武東上線であり、乗車時間に換算して延べ174万分の不効用の軽減効果が生じている。これをオフピーク通勤者に限りると、平均で24分に相当する混雑緩和効果と0.55分の乗車時間の短縮効果が生じている。非オフピーク通勤者においても、平均で4分を超える混雑緩和効果が生じるという結果である。オフピーク通勤者の乗車時間の短縮効果の大きい路線は小田急線、西武池袋線、京王線、西武新宿線であり、平均でそれぞれ2〜4分の短縮効果が生じている。
なお、首都圏全体の通勤者に対する効果は、延べ1,573万分であり、このうち乗車時間の短縮効果は全体効果の2.2％に当たる35万分である。

（３）実施地域によるシュミュレーション結果
図-5の○印は、オフピーク通勤の実施地域のみを変えてシュミュレーションした結果である。地域を広げてオフピーク通勤を実施するほど首都圏全体の効果は大きい。しかし、実施地域を8区から23区全体に広げてもそれほど効果は増加しないことがわかる。これより、都心8区程度でのオフピーク通勤キャンペーンが効果的であると考えられる。

（４）実施率によるシュミュレーション結果
図-5の□印は、基本ケースにおいてオフピーク通勤者の割合のみを1割にしたケースの結果である。2割をオフピーク通勤者とした基本ケースに比べて7割程度の効果が生じている。10人に1人が新たにオフピーク通勤した場合でも効果は比較的大きく、効果的であると考えられる。
表 - 1 首都圏主要路線のオフピーク通勤（基本ケース）による効果（通勤定期券利用者）

<table>
<thead>
<tr>
<th>区間名</th>
<th>利用者数</th>
<th>全通勤効果</th>
<th>オフピーク通勤1人当たり</th>
<th>特別通過放行1人当たり</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(万人)</td>
<td>不便な効果</td>
<td>優先可視効果</td>
<td>不便な効果</td>
</tr>
<tr>
<td>東京東部</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>小田原新線</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>関東東部</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>関東西部</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>関東中央</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>関東北部</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>東北新線</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>東北東部</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注）1. 順行する京浜東北線（東京～横浜）、山手線（東京～品川）を含む。
注）2. 順行する山陽線（東京～岡山）を含む。
注）3. 順行する東北線（新宿～池袋）を含む。

図 - 5 オフピーク通勤実施効果にみた効果

（5）分散パターンによるシミュレーション結果

以下は基本ケースにおいてオフピーク通勤者のシフトパターンのみを変えた結果（参考ケース）である。

出勤時刻を多く選ぶよりも少なくとも前にバランスよく分散する方が効果は大きい。ただ基本ケースに対する改善はわずか4%程度に留まっている。

（6）中核都市におけるオフピーク通勤の影響

今回のシミュレーションでは、東京都心部においてオフピーク通勤を実施すると、このオフピーク通勤者と、横浜、大宮・浦和、千葉等の中核都市への通勤者がこれらの都市の外側を重なり、新たな混雑のピークが生じることを明らかにした。さらに中核都市では、後ろにシフトさせるオフピーク通勤が有効であることを明らかにした。前にシフトさせると、この通勤者が東京への通勤者と中核都市の外側で重なり、新たな混雑が生じるためである。

5. おわりに

本研究では、オフピーク通勤施策を定量的に評価するためのシステムを開発し、オフピーク通勤による効果分析を行った。その結果、今後のオフピーク通勤推進活動に有用な情報を得ることができた。

本研究は平成6・7年度に運輸省および日本財団の補助により「首都圏通勤調査」が実施した「通勤・通学混雑緩和のためのオフピーク通勤推進調査」の一部を採用したものである。今後は調査結果をまとめたものである。本調査検討委員会の委員長である森地茂大学教授をはじめとする委員の方々に深く感謝の意を表します。

＜参考文献＞
1. 関東圏交通調査研究センター：平成2年大都市交通計画に関する調査報告書，平成5年2月
2. 森地茂：「首都圏交通計画の課題」，関東圏交通調査研究センター，第20号，1996年
3. 荒川・志賀：「自動車連携」と「オフピーク通勤」，自動車連携に関する調査報告書，第5号，1992年12月
4. 志賀・志賀：「自動車連携利用者の利用促進のための分析」，自動車連携に関する調査報告書，平成6年2月
5. 関東圏交通調査研究センター：オフピーク通勤による混雑緩和効果の解析調査報告書，平成6年3月
6. 関東圏交通調査研究センター：オフピーク通勤推進のためのマーケティング調査報告書，平成8年3月